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Abstract. The deterministic annealing optimization method is related to homotopy methods of
optimization, but is oriented towards global optimization: specifically, it tries to tune a penalty
parameter, thought of as “temperature”, in such a way as to reach a global optimum. Optimization
by deterministic annealing is based on thermodynamics, in the same sense that simulated annealing
is based on statistical mechanics. It is claimed to be very fast and effective, and is popular in signi-
ficant engineering applications. The language used to describe it is usually that of statistical physics
and there has been relatively little attention paid by the optimization community; this paper in part
attempts to overcome this barrier by describing deterministic annealing in more familiar terms.

The main contribution of this paper is to show explicitly that that constraints can be handled in the
context of deterministic annealing by using constraint selection functions, a generalization of penalty
and barrier functions. Constraint selection allows embedding of discrete problems into (non-convex)
continuous problems.

We also show how an idealized version of deterministic annealing can be understood in terms of
bifurcation theory, which clarifies limitations of its convergence properties.

1. Introduction

The method of deterministic annealing is a global optimization heuristic that was
invented in the statistical physics community but is now used in other areas. It
can be thought of as related to homotopy methods (Kojima et al., 1991), but is
specifically oriented towards global optimization.

Like simulated annealing, deterministic annealing uses a temperature parameter
that is decreased to zero as the algorithm progresses. It can be thought of as as
a thermodynamic version of simulated annealing: that is, it works with continu-
ous variables that obey deterministic laws. The continuous variables can be inter-
preted as bulk properties of a physical medium, in contrast to simulated annealing’s
probabilistic—and usually discrete—quantities which can be interpreted as mo-
lecular properties. The use of continuous variables and a deterministic optimization
algorithm often has considerable advantages for speed of calculation.

As well as being used on the standard test problems such as travelling salesman
(Yuille and Kosowsky, 1994), deterministic annealing is being used or proposed
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for use in significant applications such as real-time image feature extraction (Pu-
zicha et al., 1997), discrete multicommodity flow (Tovey, 1996), multidimensional
scaling applied to data visualization and embedding dimension estimation (Klock
and Buhmann, 1996, 1997), combinatorial problems (Dang, 2000; Tsuchiya et
al., 2001) and other areas. These are many reports in the literature claiming that
deterministic annealing outperforms other global optimization methods such as
stochastic annealing or the EM algorithm: it is claimed to deliver optimal, or at
least “good”, solutions very quickly.

In spite of enthusiasm amongst practitioners, deterministic annealing has re-
ceived little attention from the optimization community, perhaps because, like sim-
ulated annealing before it, deterministic annealing derives largely from the physics
community (see for instance, Simic, 1990; Stolorz, 1991; Yuille and Kosowsky,
1994 and Acton and Bovik, 1996) so the language is unfamilliar. This is a pity, both
because there are many unanswered questions about its convergence properties and
because the method may be considerably improved in at least some applications by
using standard methods of optimization theory.

In this paper we describe deterministic annealing in terms that do not require
knowledge of statistical mechanics. We also show how it can be extended to handle
constrained problems, using a generalization of penalty function and barrier func-
tion methods. This is done in Section 2.1, where we also develop a general method
of embedding discrete problems in continuous problems. The discrete variables
are relaxed to become continuous and, as the temperature parameter decreases,
they are tightened back to discrete values in a way that allows continuous optimiz-
ation methods to be used. We also briefly discuss the imposition of other kinds os
constraints.

We should make it clear that the motivation for deterministic annealing is not
purely to replicate well-known results involving penalty and barrier functions. The
intent is that, by suitably tuning the temperature parameter, one can reach the global
optimum in a non-convex problem, at least in idealized cases. In Section 3.2 we
interpret deterministic annealing in terms of bifurcations and show that it may, in
fact, not converge to the global optimum. In Section 4.1 we discuss how some of
the limitations may be overcome in a practical problem, discrete multicommodity
flow.

2. Deterministic annealing

Statistical mechanics has given rise to several ideas that are useful in optimiza-
tion and other areas outside physics. For example, the Gibbs distribution is used
in Bayesian statistics and in image processing (see for example, Ruanaidh and
Fitzgerald, 1996). The best known optimization method inspired by statistical mech-
anics is stochastic (or simulated) annealing (Kirkpatrick et al., 1982; Lundy and
Mees, 1986; Geman and Geman, 1985), which enables approximate solution of
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Table 1. Comparison of deterministic and stochastic annealing

Stochastic Deterministic

Concepts Molecular level Bulk level

Physical analogy Spin glass Elastic net

Temperature Allows uphill steps Smooths local fluctuations

Variables Usually discrete Mostly continuous

Optimization Random walk with drift Gradient dynamics

Speed Fairly slow Fast

Convergence Yes if cooled slowly enough Not necessarily, but is claimed

to give “good” solutions.

Key result Markov chain equilibrium Mean field theory

difficult optimization problems using a probabilistic approach inspired by models
of energy minimization at the molecular level. Most recently (Simic, 1990; Stolorz,
1991; Yuille and Kosowsky, 1994; Tovey and Mees, 1995; Tovey, 1996) determ-
inistic annealing has appeared as a generalization and improvement of an earlier
approach called “mean field annealing”.

Table 1 compares stochastic and deterministic annealing. There are two sig-
nificant differences from the point of view of optimization. The first difference
is that the problem to be solved is a deterministic optimization over continuous
variable, which makes it possible for deterministic annealing to use the well-known
powerful results of continuous optimization theory. The second difference is that
there is no guarantee of convergence, even if the temperature parameter is lowered
adiabatically (“infinitely slowly”); we will give a counter-example later showing
on showing that the global optimum may not be attained even in an idealized
version. We remark that one minor advantage of deterministic annealing is that
for any problem there are fixed minimum and maximum values of T which may in
principle be calculated: this part of the algorithm, at least, is not heuristic.

There are interpretations of deterministic annealing in probabilistic terms (Pu-
zicha et al., 1997) but this does not seem necessary. In this paper our approach is
entirely deterministic, in accord with the way the algorithm is commonly used. We
assume the problem is

minimize f (x) over x ∈ � with c(x) = 0 (1)

where � ⊂ R
n is a discrete set, and f : � → R and c : � → R

m can be extended
in some natural way to f̃ : R

n → R and c̃ : R
n → R

m. There may be many ways
of embedding a given set � in R

n but we assume this has already been done, and
that � is a finite set of points. (We deal with the functional constraints c(x) = 0
separately, in Section 3.1 and Section 4.1.) The extended functions f̃ and c̃ are
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assumed to differentiable. From now on we do not distinguish between f̃ and f

and between c̃ and c.
In interesting cases, the structure of � makes the optimization difficult using

standard methods. This may be because the problem is NP-hard (for example, in the
travelling salesman problem, � is all permutations of 2, . . . , n, up to symmetry).
Alternatively, � may be defined via constraints that are difficult to work with in
some way.

The deterministic annealing approach, in the form described in this paper, ex-
presses � via some constraints parametrized by T ∈ R. The constraints are de-
signed so that every global minimum of the continuous problem converges to a
global minimum of the discrete problem (1) as T → 0.

2.1. CONSTRAINT SELECTION FUNCTIONS

The fundamental requirement for solving discrete problems by deterministic an-
nealing is to find a method of treating the variables as continuous while represent-
ing the discreteness requirements as functional constraints. A useful way to think
about discreteness constraints is that any feasible solution to the discrete problem
will correspond to a particular subset chosen from among some equality constraints
applied to the continuous problem. For example, if we embed an n-dimensional
binary optimization problem in the unit cube [0, 1]n then the constraints are of the
form

for each i, xi = 0 OR xi = 1.

It is intuitively clear that “or-ing” constraints in this way cannot be done with
conventional penalty functions while retaining convexity; for a proof, see Tovey
(1996). This difficulty can be overcome by generalizing the idea of penalty func-
tions.

We introduce the idea of constraint selection functions, which are parametrized
by T and which are convex for large T but as T → 0 they have minima which
approach all the points of �.

DEFINITION 2.1. (Constraint Selection Function). A twice differentiable func-
tion g : R

n × R+ → R+ is a constraint selection function for a set � ∈ R
n if all of

the following hold:
1. there exists Tmax � 0 such that g(x, T ) is convex in x for all T � Tmax;
2. for each T > 0 let the set of minima of g be X(T ); then g(x, T ) = θ(T ) � 0

for all x ∈ X(T ) (i.e., the minima are all equal); and θ(T ) → 0 as T → 0.

3. for small T , the elements of � correspond to the minima of g: that is, for all
ε > 0 there exists some Tmin such that when T < Tmin, for every z ∈ � there
is some x ∈ X(T ) such that |z − x| < ε, and for every x ∈ X(T ) there is
some z ∈ � such that |z − x| < ε.
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4. for small T , g(x, T ) is unbounded away from �: specifically,

g(x, T ) → ∞ as T → 0 if x /∈ �

A constraint selection function is therefore a function that is convex for large T ,
and for small T has equal minima at points that approach all the elements of � as
T → 0. Condition 3 is stronger than necessary but ensures that g has no spurious
local minima to confuse an optimization algorithm, and likewise condition 2 could
be weakened but by requiring equal values for all minima we ensure g does not
bias the solution.

THEOREM 2.2. The optimization problem

minimize f (x) + g(x, T ) over x ∈ R
n with c(x) = 0 (2)

has the same solution as (1) in the limit T → 0.

The theorem is a straightforward consequence of the way we have defined con-
straint selection functions. It states that as T → 0, the function g enforces the
constraints x ∈ �.

The definition of constraint selection functions does not place any restrictions
on ω. So, for example, conventional penalty and barrier functions can be con-
sidered as special cases of constraint selection functions. However, in this paper
we use constraint selection functions only to handle discreteness constraints and
in addition, for notational simplicity, we restrict attention to the common case
� = {0, 1. . . . , K}n. For a constraint selection function that works in the case
of general discrete sets, see Tovey (1996). In the present case, consider

g(x, T ) =
n∑

i=1

h(xi, T ) (3)

where

h(xi, T ) = −T log
K∑

k=0

exp(−(xi − k)2/T 2). (4)

This choice of g is separable in the components of x, though this is not usually
directly useful in solving (2) since f is not normally separable.

Although we do not need the statistical physics background, it may help in
reading the deterministic annealing literature to know that the functions h are in-
spired by entropies in thermodynamics and it can be shown (Tovey, 1996) that all
thermodynamic averages corresponding to problem (1) are the same as those of
problem (2) with the above choice of g(x, T ). The key statistical mechanics fact
is that in the limit T → 0), the average value of x turns out to be equal to the
minimizer of (1) or (2), which is why solving (2) also solves (1). For a proof of
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Theorem 2.2 in statistical physics terms, see Tovey (1996) and Tovey and Mees
(1995).

2.2. PROPERTIES OF g

To get an informal idea of why g works as a constraint selection function look at
its components h:

h(xi, T ) = −T log

(
e−x2

i /T 2 +
K∑

k=1

e−(xi−k)2/T 2

)
.

Factor out the first term to give

h(xi, T ) = x2

T
− T log

(
1 +

K∑
k=1

ek(2x−k)/T 2

)
.

For small T , this looks like a penalty function x2/T when x is close to 0. In particu-
lar, h(0, T ) → 0 as T → ∞ and for fixed � with 0 < |�| < 1/2, h(�, T ) → ∞
as T → ∞. Since h is symmetric in k = 0, . . . , K, we could instead have factored
out any term to see that h looks like (x − k)2/T for x close to k and h(k, T ) → 0
as T → ∞.

To prove that g is a constraint selection function requires checking the condi-
tions in the definition. Most of this is straightforward. We only show the proof for
convexity here, which has the nice feature that it gives an explicit value for Tmax.

PROPOSITION 2.3. If T � K then g(x, T ) is convex in x ∈ R
n

Proof. Define

S =
K∑

k=0

e−(xi−k)2/T 2

so that h = −T log S. Then

∂h

∂xi

= −T

S

∂S

∂xi

,
∂2h

∂x2
i

= T

s2

(
∂S

∂xi

)
− T

S

∂2S

∂x2
i

.

But

∂S

∂xi

= − 2

T 2
L,

∂2S

∂x2
i

= 4

T 4
Q − 2

T 2
S

where L = ∑
k(xi − k) exp(−(xi − k)2/T 2) and Q = ∑

k(xi − k)2 exp(−(xi −
k)2/T 2).
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Hence

∂2h

∂x2
i

= 2

T 3S2
(2L2 − 2QS + T 2S2).

Writing out explicitly the term in parentheses we get

2L2 − 2QS + T 2S2 =
∑
k,j

e−(xi−k)2/T 2
e−(xi−j)2/T 2 (

2(xi − k)(xi − j)

−2(xi − k)2 + T 2)
=

∑
k,j

e−(xi−k)2/T 2
e−(xi−j)2/T 2 (

2(xi − k)(k − j) + T 2)

In the double summation, when k = j the part in parentheses reduces to T 2 and is
positive. The terms with k �= j the occur symmetrically, so we can add each pair
to get

2((xi − k) − (xi − j))(k − j) + 2T 2 = 2(T 2 − (k − j)2)

� 2(T 2 − K2)

where we have replaced (k − j)2 by its maximum value K2. Hence every term in
the summation is non-negative if T � K, so h has positive second derivative under
that condition.

Since g is additive in h, g is also convex when T � K, completing the proof. �
Remark: It is easily verified by calculation of the second derivative that in the bin-
ary case (K = 1), Tmax = 1/

√
2, showing that the bound T � K is conservative.

The following result is obtained from the Proposition 2.3 together with a
straightforward check on the remaining conditions of Definition 2.1.

LEMMA 2.4. g(x, T ) defined by (3) and (4) is a constraint selection function.

3. Solution methods

The idea of deterministic annealing is to try to solve the problem

minimize L(x, T ) = f (x) + g(x, T ) over x ∈ R with c(x) = 0 (5)

for temperature T starting at a large value and decreasing to 0. We have seen that g

is convex for large enough T and looks like a quadratic penalty function near each
element of �. Proposition 2.3 and Lemma 2.4 show that solving (5) is equivalent
to solving (1).

Any reasonable minimization algorithm will find a local minimum of (5) and
hence a local minimum of (1) as T → 0. The difficulty is, of course, that we have
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to find a global minimum of (5) as T → 0. It is hoped that, if we start with a global
minimum x̂(T ) at a high enough value of T (say, T = K if f is convex) and follow
it as T decreases adiabatically, then x̂(T ) will converge to the global optimum of
(5) and hence of (1).

As we have seen, choosing a suitable initial temperature is easy if the optim-
ization problem without g (i.e., the problem of minimizing f (x) over R

n subject
to c(x) = 0) is convex. If f is not convex, it may be possible to generalize it to
f̃ (x, T ) where f̃ (x, T ) is convex in x for large T ; we will not consider this case
in the present paper.

3.1. PENALTIES AND CONSTRAINTS

One way to incorporate some or all of the functional constraints c(x) = 0 is to use
penalty functions, for example,

∑
i∈I ci(x)2/T where I indexes those constraints

chosen to be applied by penalty functions. This seems to be the commonest way
to incorporate constraints in the published deterministic annealing literature, but
there is no reason to insist on applying constraints in this way. To allow the use
of penalty methods without excluding other methods, we redefine the optimization
problem as

minimize L(x, T ) = f (x, T ) + g(x, T ) over x ∈ R
n with c̃(x) = 0 (6)

where now f (x, T ) may incorporate some constraints as penalties if desired, Any
remaining constraints represented by c̃(x) = 0 are to be dealt with in some other
way, such as Lagrangian methods. We replace c̃ by c from now on.

We also remark that although we do not include them explicitly, inequality
constraints may either be left as they are or treated by barrier functions, again
absorbing the barrier functions into f (x, T ).

3.2. BIFURCATIONS

An idealized representation of deterministic annealing is as a solution continuation
method. We solve the problem for a large enough value of T , and use a continu-
ation method (Kojima et al., 1991) to explicitly follow the initial solution as T

decreases. Different local minima will appear as a result of bifurcations on the path
being followed, or will appear in a different path. The question of whether a global
optimum is reached is equivalent to asking whether the solution branch that the
continuation method follows, starting at x̂(T0), leads to the global optimum. Some
simple examples show that the global solution may or may not be reached.

Figure 1 shows the path for the problem

minimize (x − 1/4)2 over x ∈ {0, 1}
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Figure 1. Minimizing (x − 1/4)2 over x ∈ {0, 1} by deterministic annealing. The surface and
contour plot both show the total energy function (objective function plus constraint selection
function) as a function of x and β = 1/T . The surface plot demonstrates convexity in x at
high temperatures and lack of convexity at low temperatures. The contour plot also shows
the locations of stationary points. (Minima: solid lines, maxima: dashed line.) As T decreases
the number of stationary points in x increases from 1 to 3, but the global solution is on the
path traced out by the continuation of the single minimum which occurs for all values of
T > 1/

√
2.

Figure 2. Minimizing x4 + 1.5/x + 1) over x ∈ {0.1} by deterministic annealing. As before,
the number of stationary points in x increases from 1 to 3, but the global solution is not on
the path traced out by the continuation of the single minimum but on an isola, created by a
saddle-node bifurcation which generates a minimum and a maximum at a point far from the
minimum for the then current value of T .

and we see that for large T there is a unique minimum while for small T there are
two minima (solid lines) and one local maximum (dashed line). The minimum at
high values of T is connected by a non-branching path to the solution as T → 0,
and the deterministic annealing method will deliver the correct solution.

Figure 2 shows the path for the problem

minimize x4 + 3/2

1 + x
over x ∈ {0, 1}

and we see that, as before, for large T there is a unique minimum while for small T

there are two local minima (solid lines) and one local maximum (dashed line). This
time, however, the minimum at high values of T is connected by a non-branching
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path to a point which is not the solution as T → 0, and the deterministic annealing
problem will deliver the wrong solution.

The behavior can be understood via bifurcation theory. For the function f =
constant, the path undergoes a pitchfork bifurcation (Glendinning, 1994) at T =
1/

√
2. The two different choices of f in the above examples unfold the degenerate

pitchfork into a non-bifurcating path and a saddle-node bifurcation (at the points
marked S in the figures) in two different ways. In one case, the path followed
happens to lead to the optimum and in the other case it does not.

In general g will have a highly degenerate bifurcation (a pitchfork simultan-
eously in all n dimensions) which will be unfolded into non-degenerate, or at least
less degenerate, forms by the presence of f . Degenerate bifurcations are difficult
to handle numerically and the branch taken by an algorithm will depend on the
details of the algorithm. On the other hand, since any unfolding depends on f , we
cannot expect to be able to solve all possible problems this way: we have already
seen a trivial example where the unfolding is such as to give the wrong answer.

In the examples, the idealized deterministic annealing method in effect just
“rounds off” the continuous solution in the sense that it chooses the point in �

nearest the unconstrained minimum of f . This may be an over-simplified descrip-
tion of the method in higher dimensions, but it is plausible that this idealized
version of deterministic annealing will only perform well on problems for which
there are many good solutions, or for which rounding off the continuous solution
gives good results.

3.3. FINAL TEMPERATURE

If � has a finite number of elements there can only by finitely many bifurcations as
T decreases, and hence there is a value Tmin beyond which no further bifurcations
can take place. The system can then be “quenched”, that is, cooled quickly to T =
0. This is not very helpful in practice because determining Tmin is unlikely to be
possible. Most implementations seem to be designed to terminate when the solution
is much closer to one element of � than to any other.

3.4. OTHER SOLUTION METHODS

In practice, continuation methods do not seem to be used directly. More often, prac-
titioners use gradient descent, either as simple steepest descent, or by converting
the minimization to a differential equation. A typical scheme might be

ẋ = −∇xL(x, T )

Ṫ = −εT .
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where L(x, T ) = f (x, T ) + g(x, T ). The T dynamics are analogous to geometric
cooling for stochastic annealing, which is known to be be a bad choice in the
stochastic algorithm.

Such a differential equation method can be thought of as approaching but never
reaching the solution continuation curve. The loci of maxima divide the space
into basins of attraction and the final solution reached may depend on the starting
point, if there have been bifurcations along the path from the high-temperature
minimum, or if convergence to the minima is not particularly fast (e.g., if ε is not
small enough). Dependence of solutions on starting conditions, and convergence to
poor solutions (or even infeasible solutions, if penalty functions are used) occurs
in realistic applications such as knapsack problems.

An improvement suggested by Stolorz (1991) and by Tovey (1996) is to replace
Ṫ equation by

∂β

∂t
= +∇βL(x, β)

where β = 1/T . Now a saddle-point method can be used to simultaneously solve
the primal and the dual problems. Stolorz calls this adaptive annealing and asserts
that it performs well. A different β can be used for each constraint, giving “local
temperatures”.

There is no reason to suppose that gradient descent or any of its improvements
will give better solutions in general than curve tracking, with the possible excep-
tion of local temperatures if it is made possible for local temperatures to increase
provided the overall temperature is decreasing.

A possibly useful approach, if a sophisticated solution continuation method
(Doedel and Kernevez, 1998) is used, is to keep track of several branches and pick
the best. One retains the best N branches, for some moderate value of N , dropping
the worst old ones whenever new branches appear. This improves the chance of
finding a good solution, but depends on there being bifurcations on the curve being
followed. If all the good solutions are on isolae then this method would not find
any of them.

Another possibility is to reintroduce randomness into the algorithm, in the hope
of jumping out of local minima. This would complicate the analysis immensely but
seems to be used in some applications.

Finally, we should point out that most numerical methods would have diffi-
culties with high order bifurcations: for example, as we pointed out earlier, the
constraint selection function has simultaneous pitchfork bifurcations in all vari-
ables, so unless the degeneracy is unfolded by f , the Hessian has all its eigenvalues
passing through zero at the same value of T . And it does not help that a common
way of adding an equality constraint c(x) = 0 is to add 1/T c(x)2 to L, which
could lead to further degeneracies.

It is clear that much work is needed to understand which of the proposed im-
provements is valuable in practice.
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4. Applications

In spite of the reservations we have expressed about the theoretical ability of de-
terministic annealing to find good solutions, it does often perform well in practice.
Here we look at one problem; for others, consult the literature already cited.

4.1. MULTICOMMODITY FLOW

The binary multicommodity flow problem is

minimize
∑
a,j

fa

(
x1

a , . . . , xJ
a

)
xj

a ∈ {0, 1} ∀a, j

with the constraints

Exj = bj ∀j and
∑

j

|xj
a | � ca ∀a

where x
j
a is the flow of commodity j on arc a. The capacity of arc a is ca and

has to be shared between commodities. If the arcs are unidirectional then |xj
a |

can be replaced by x
j
a in the capacity constraint. The matrix E is the node-arc

incidence matrix of the network (Rockafellar, 1984) and the vector bj is the supply-
demand vector for the j th commodity, so Exj = bj represents supply-demand
satisfaction for the j th commodity (and flow conservation at nodes which are not
supply-demand nodes). This is an NP-hard problem (Garey and Johnson, 1979).

To solve it using deterministic annealing we allow the variables x
j
a to be con-

tinuous and add the standard constraint selection function g. The problem is now
a continuous nonlinear multicommodity flow problem, which can be solved in any
of several ways (Boland et al., 1992). The constraints Exj = bj could be handled
by penalty functions but the resulting problem turns out to behave badly (Tovey,
1996); it is better to use active set methods or other standard methods of nonlinear
programming.

One way to apply deterministic annealing to this problem is to start with x such
that Exj = bj for all j and then only change xj within the null space of E. In
this way we will always have a feasible network flow. Doing so corresponds to
changing xj round a cycle or cycles in the network, that is, to constraining δxj

for every j to lie in circulation space (Rockafellar, 1984). To ensure Eδxj = 0
we project the gradient onto the appropriate subspace. We can enforce the capacity
constraint either by penalty functions or by active set methods; in the following we
used penalty functions.
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Figure 3. Average performance of deterministic annealing on 50 binary multicommodity flow
problems with randomly generated networks of 35 arcs and 10 nodes. In each case the hori-
zontal axis is number of commodities. The upper graph shows time per step (in milliseconds),
the middle graph is average number of steps to termination, and the lower graph shows total
computation time. It should be noted that an antique computer was used (a 70 MHz 486
processor) and the times should be scaled accordingly for current computers.

4.2. PERFORMANCE

We solved a large number of binary multicommodity flow problems, all having
capacity ca = 1 on each arc. The graphs were randomly generated subject to
connectivity between all sources and their sinks, and the sources and sinks were
themselves randomly selected. In Figure 3 we show some computational results for
solution by deterministic annealing, using a projected gradient method as outlined
above. The computation time per step and the number of steps to solution are both
roughly linear in the number of commodities over the range 1–10 commodities,
with the result that the total computation time is approximately quadratic. In every
case the terminating solutions were better than or comparable to those obtained by
a much slower stochastic annealing progress.

5. Conclusions

The main contribution of this paper has been to show how deterministic annealing
may be applied to constrained problems using constraint selection functions, which
are generalized penalty or barrier function method. It may be useful for finding loc-
ally optimal solutions to discrete problems by embedding them in a parametrized
class of continuous problems that converges to the discrete problem.

Although the intention of deterministic annealing is to find globally optimal
solutions to non-convex problems, it is not clear that global optimality, or even
any particular quality of solution, can be guaranteed by any of the currently pro-
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posed variants of the method, though practical experience is encouraging. The
combination of standard constrained and unconstrained optimization methods with
constraint selection functions may be more powerful than deterministic annealing
as currently applied.
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